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The reality of machine learning

goal — loss / reward / likelihood

B REQUIREMENTS

harmlessness safety robustness fairness

Image sources: Stanford HAI, Waymo, WIRED, NBC



The risk of machine learning

them to ask for lower salaries, study says
New York Post, JUL 29, 2025

Al chatbots might be sabotaging women by advising J

school bus safety concerns
Reuters, OCT 21, 2025

NHTSA probes Waymo self-driving cars over J

Al-Powered Robots Can Be Tricked Into Acts of Violence
WIRED, DEC 4, 2024J

can be biased

Study reveals why Al models that analyze medical images J

MIT News, JUN 28, 2024




Requirement-driven machine learning

requirements

harmlessness safety robustness fairness

Image sources: Stanford HAI, Waymo, WIRED, NBC



Motivating application: Robotics

B LLM-CONTROLLED ROBOTS

Figure Al

maximize dos
LLM policy

subject to don’ts > threshold



Motivating application: Healthcare

B Al THERAPY CHATBOTS

Stanford HAI

maximize helpfulness
LLM policy

subject to harmlessness > threshold



REAL-WORLD CHALLENGE

Constraint satisfaction




OBJECTIVE

Find a Large Language Model (LLM) that
maximizes a performance metric
subject to a constraint on
another performance metric




Outline
B CONSTRAINED LLM ALIGNMENT
» constrained policy optimization

B ALIGNMENT METHOD & THEORY

* non-iterative & iterative methods

x duality gap & optimality gap
B EMPIRICAL STUDY

» safety-alignment task

B SUMMARY & OUTLOOK



CONSTRAINED LLM ALIGNMENT

constrained policy optimization



Alignment framework

B REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

x reward modeling

@ — — E
$oe
z,y), g(x

Tret (Y | @) 7(

)

Tet: X (prompts) — ) (responses) — reference LLM policy
r(x,y), g(x,y) — reward/utility models
» reward/utility models

e.q., SafeRLHF: helpfulness and harmlessness Dai et al., ICLR 24



Alignment framework

B REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

= policy optimization

S+ G- E

Tret (y | ) r(z,y), 9(z,y) m(y|x)

Tret: X (prompts) — ) (responses) — reference LLM policy

m: X (prompts) — )V (responses) — aligned LLM policy

e.g., direct preference optimization (preference-based) Rafailov et al., NeurIlPS ’23



Response space

B RESPONSE SPACE SIZE

(# total tokens)# tokens per sentence

030

e.g., ChatGPT-3.5 / Liama 3: 4(0() ~ 10108 s 1080

exponentially large decision space



Constrained alignment problem

max}rmize E, [EyNW [r(z,y)] — BDkL(m(-|2) || mres(- | 2)) ]
subject to By [Eymr [g(z,5)]] = 0 ~

L KL-regularized objective

policy constraint

= limit the policy space to an inequality constraint

e.g., harmless policy, safe policy



Constrained policy optimization

max}rmize E, [Ey,wr [r(z,y)] — BDkL(m(-|z) || mret(- [ 7)) ]

subject to Ey[Ey~rlg(x,y)]] = 0 >

L KL-regularized objective

policy constraint

* Nno transition dynamics

» concave KL-regularized objective and linear constraint

Convex constrained policy optimization — Strong duality



Lagrangian relaxation

B LAGRANGIAN

L(mA) = BEo[Byr[r(z,y) + Ag(x,y)] = BDrL(m(-[2) || mrer(- | 2)) ]

» penalize violation via dual variable A > 0

B LAGRANGIAN MAXIMIZATION

maximize L(m,\)
convex conjugate
» exponentially tilted distribution 7*(- | z; \)

ﬂ'*(. | l‘; )\) X 7Tref(' | x) e(’l"(I,') +)‘g(m>))/ﬁ

Existence of an optimal dual variable \*



Lagrangian dual function

B UPPER ENVELOPE FUNCTION
D()\) := maximize L(m, \)

— BE, [logEyNWref [e<r<z,y>+xg<x,y>>/ﬁ} }

cumulant-generating function

x convex, and smooth function

= strictly convex, and locally strongly convex function

VD) =~ E, [Var, .|z L9z, y)]]



Lagrangian dual problem
B LAGRANGAIN DUAL MINIMIZATION
mi]/r\lizn(l)ize D()\)
convex and smooth optimization

» gradient descent finds an optimal dual variable \*

x uniqueness of an optimal dual variable \*

Recovery of an optimal constrained policy 7*

(1) = w2 N T | 2) o) F Aol




B GEOMETRIC INTERPRETATION OF STRONG DUALITY

D*:t—i—)\*u t

[ — "

image & = {(g(n),rk(7)) |7}

Optimal hyperplane touches £ at an optimal policy: D* = r¢ (7*) := P*



Overview of our results

ZLHBD'R, NeurlPS '25
HILTDBLHD, NeurlPS "24

B DUALIZATION-BASED ALIGNMENT METHODS
* nhon-iterative & iterative methods
» duality gap

» optimality gap objective and constraint

Dual methods find an optimal constrained LLM policy,
up to a parametrization gap




ALIGNMENT METHOD & THEORY

non-iterative method



Dualization-based alignment

HTLTDBLHD, NeurlPS 24
B STAGE #1: FIND AN OPTIMAL DUAL VARIABLE

A* = argmin D(\)
A>0

convex and smooth optimization

B STAGE #2: SEARCH FOR AN LLM POLICY

7 = argmax L(m,\")

s

unconstrained alignment

Computational efficiency



Search for an optimal dual variable

Lagrangian maximizer: =*(\) = argmax L(m,\)

s

Gradient: VD(\) = V,L(7, ) [r = (3
B PROJECTED GRADIENT DESCENT
AT« [A=nVDW)]

» m-independent gradient V.D(\)

By oy [ €@ 9@/ B g (1 4]
Ey oy €@ A0(@y))/8 ]

VD(\) =

Offline biased estimate



Search for an LLM policy

Lagrangian maximizer: =*(\*) € argmax L(m, \")

™

B POLICY PARAMETRIZATION

T(ylz) <—  m(y|x)
model parameter ¢

B PARAMETRIZED LAGRANGIAN MAXIMIZER

Toe(ar) € arggnax L(mg, \*)

QUESTION: Optimality of \*-recovered model my-(y+) := m5(\*) ?




Constrained parameter optimization

maxi@mize Eg [Eynmy [7(2,y)] — BDki(mo(- | 2) || Tres(- [ 2)) ]
subject to Ey [Ey~m [9(z,9)]] >0 N
L KL-regularized objective

policy constraint

» decision of model parameter ¢

CHALLENGE

Nonconvex constrained optimization — Lack of strong duality




ALIGNMENT METHOD & THEORY

iterative method



Parametrized Lagrangian dual problem
B LAGRANGIAN DUAL FUNCTION

Dp(N) = maxgmize L(mg, \)
+ convex, and nondifferentiable function
B LAGRANGIAN DUAL MINIMIZATION

imize De(\
minimize o(A)

Existence of an optimal parametrized dual variable )\;



Search for an optimal parametrized dual variable

Lagrangian maximizer: 60*(\) € argmax L(mp, \)
0

Subgradient: u(\) = ViL(m, ) |g = ¢+(5)

B PROJECTED SUBGRADIENT DESCENT

AT = (A = mu(N) 1

« explicit subgradient u(A\) = Ey ., [9(x,y)]

Online unbiased estimate



Iterative dualization-based alignment

ZLHBD'R, NeurlPS '25
B ITERATION #1: COMPUTE A LAGRANGIAN MAXIMIZER

0*(\) € argmax L(mg,\)
0

B ITERATION #2: PERFORM A SUBGRADIENT DESCENT STEP

)\J" < |:)\ - nEyNWg*(,\)[g(m7y)] :|+

QUESTION: Optimality of Aj-recovered model 7y-(rs) = 75 (Ag) 7




ALIGNMENT METHOD & THEORY
duality gap & optimality gap



Duality gap

Duality gap: |P* — Dj|

Theorem (informal)
% Duality gap is dominated by
parametrization gap v := max H’gll dist; (7, mp)

» v-parametrization gap yields v-duality gap

linear independence



B GEOMETRIC INTERPRETATION OF DUALITY GAP
DY =t + \u

[ —

image £ = {(g(n),rk (7)) |7}



B GEOMETRIC INTERPRETATION OF DU
DY =t + \u

ALITY GAP

t

N

C—

image £ = {(g(n),rk (7)) |7}

~

image & = { (g(mq),7x(me)) |0}



B GEOMETRIC INTERPRETATION OF DUALITY GAP

NS
@/f\/ :

image £ = {(g(m),na(m)) [} image & = {(g(m),r(mo)) |0}

D;:t—l—/\;u

Optimal hyperplane touches &, w/ t-intercept D;:
D*—D: = O(v)



Gap between optimal dual variables

B GAP BETWEEN (UN)PARAMETRIZED DUAL FUNCTIONS

A D()\)

A5 A

Optimal dual variables: \*, \} are close:

A =Xl = OWWw)



Optimality gap for iterative method

Objective optimality: | rx (m5(\5)) — rk(n™) |

Constraint feasibility: | g (75(\5)) — g(7*) |

Implication (informal)

% Objective optimality & Constraint feasibility are dominated by

N

parametrization gap v := max mein dist; (7, 7p)

Root-scaling of parametrization gap



Optimality gap for non-iterative method

Objective optimality: | rx (w5 (X)) — rc(7) |

Constraint feasibility: | g (75(\*)) — g(*) |

Implication (informal)

% Objective optimality & Constraint feasibility are dominated by

N

parametrization gap v := max mein dist; (7, 7p)

Root-scaling of parametrization gap



EMPIRICAL STUDY

safety-alignment task



Practical implementation

B NON-ITERATIVE DUALIZATION ALIGNMENT

model-based setting
offline model-based dual
pseudo-preference optimization

preference-based setting
offline preference-based dual
pseudo-preference optimization

B ITERATIVE DUALIZATION ALIGNMENT

model-based setting
online model-based dual
pseudo-preference optimization

preference-based setting
online preference-based dual
pseudo-preference optimization




Constraint satisfaction

124 +— iterative method

101 +— non-iterative method

Harmlessness score

)]

30 40 50 60 7.0 80 90
Constraint threshold
Better constraint satisfaction



Helpfulness and Harmlessness tradeoff
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Harmlessness and Humor constraints

Harmlessness score Humor score
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Multi-constraint satisfaction



Summary & outlook

ZLHBD'R, NeurlPS '25
HTLTDBLHD, NeurlPS '24

B DUALIZATION-BASED ALIGNMENT METHODS

* nhon-iterative & iterative methods

= duality gap & optimality gap

B OPEN CHALLENGES

~ optimal sample complexity

» multi-turn alignment



Thank you for your attention.



